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LETTER TO THE EDITOR 

Diffusivity and radius of random animals, percolation 
clusters and compact clusters 

Harvey Gouldt and Klaus HolM 
t Center for Polymer StudiesO, Boston University, Boston, MA 02215, USA and Depart- 
ment of Physics, Clark University, Worcester, MA 01610, USA 
i: Institut fur Theoretische Physik, Universitat zu Koln, Federal Republic of Germany 

Received 22 July 1981 

Abstract. We define a cluster diffusivity D, by introducing a random rearrangement 
between arbitrary cluster and perimeter sites such that the cluster remains connected. 
Monte Carlo simulation is used on the square and simple cubic lattices to determine the 
dependence of D, and the radius of gyration R, on s, the number of cluster sites. Three 
limiting cases are considered: random animals ( p  = 0), precolation clusters ( p  = p , )  and 
compact clusters ( p  > pJ. Our results for the exponent p of R, are consistent with the best 
experimental and theoretical values. We develop an elementary scaling theory for the 
observed power law dependence of D, in terms of different mechanisms dominant for small 
and large clusters. A position space renormalisation group calculation in two dimensions 
yields corrections to the elementary theory for random animals and percolation clusters; the 
predictions are consistent with the Monte Carlo results for D,. 

Although percolation has received much attention recently, little is known about 
time-dependent generalisations (Hammersley and Welsh 1980) of percolation related 
phenomena. We consider here a simple model for diffusion of an s-site percolation 
cluster. Our main interest is the Monte Carlo and renormalisation group calculation of 
the s-dependence of the cluster diffusion constant, a quantity of interest in phase 
separation kinetics (Binder and Kalos 1980). We also present new Monte Carlo results 
for the exponent p of the radius of gyration. 

In site percolation each site on a lattice is randomly occupied with probability p and 
is unoccupied with probability q = 1 - p .  A percolation cluster of size s is characterised 
by s sites connected by nearest-neighbour distances and by t unoccupied perimeter sites 
which terminate the cluster (Stauffer 1979). In order to obtain diffusion, we allow the 
interchange of an arbitrary cluster site and a perimeter site such that the cluster remains 
connected (see figure 1). For a given configuration the probability of an interchange or 
‘jump’ is qAf  (Stauffer 1978), where At is the difference in the number of perimeter sites 
of the configuration produced by the jump. Since each jump leads to a displacement of 
the centre of mass of the cluster, we can define a cluster diffusion constant or ‘cluster 
diffusivity’ D, by 

(AX,)* = 2dD,r, (1) 
where is the mean square displacement of the centre of mass of an s-site cluster 
on a d -dimensional lattice. The time T is chosen arbitrarily so that on the average every 
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Figure 1. Example of a three-site cluster configuration with t = 7. According to the rules 
discussed above, site a cannot jump to perimeter sites 1 and 3 ;  site b can jump only to site 2. 
The shift in the centre of mass due to the jump c + 1 is (AR)* = 2. 

cluster site is exchanged once in one unit of time, i.e. 7 - l /s .  The average in (1) is over 
all possible jumps of one cluster of fixed size s. We remark that although the time 
appears in (l), the calulation of D, is essentially a rearrangement problem with no 
memory of prior interchanges. 

Monte Carlo calculation of RS. The rearrangement procedure described above can 
be used to generate all possible geometrically distinct configurations of an s-site cluster. 
This method is the basis of a ‘dynamic’ Monte Carlo (MC) calculation (Peters et a1 1979) 
of R,, the average radius of gyration of an s-site cluster. Hence it is straightforward to 
use the same method to generate MC results for the large-s behaviour of D,. 

Since the s-dependence of D, depends in part on the s-dependence of R,, we first 
discuss the new MC results for R,. We define the exponent p in the usual way (Stauffer 
1979), 

R, -s ’  (s + 03). (2) 
Due to an improved algorithm (Franke 1980), our statistics are improved and more 
reliable than in earlier work (Peters et a1 1979). We compare in table 1 the results (Holl 
1980) for p in two and three dimensions with the corresponding best theoretical values, 
The maximum cluster sizes used in the MC calculations on the square and simple cubic 

Table 1. Comparison of present MC results for the radius of gyration exponent p with best 
theoretical values. 

MC results Best theoretical values 

p = 0 0.65 *0.02 0.6408*0.0003 Derrida and de Seze 1981 
0.647*0.020 Family 1981 

d = 2  0.61 Parisi and Sourlas 1981 

1980 
p = p c  0.53*0.01 2-0.5275 Pearson 1980 and Nienhius et al 

0.52*0.02 Family and Reynolds 1981 
p > p ,  0.495*0.005 4 (exact) 

p = 0 0.53 *0.02 (exact) Parisi and Sourlas 1981 

p > U, 0.330*0.005 f (exact) 
d = 3 p = p c  0.39*0.02 0.40zt0.01 Stauffer 1979 
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lattices are given in tables 2, 3 and 4. Renormalisation group arguments (Family and 
Coniglio 1980, Harris and Lubensky 1981) imply that p has three different values 
corresponding to p ( p  = 0), p ( p  = p , )  and p ( p  = 1). That is, for s + 03, the behaviour of 
R, is controlled for p > p ,  by the compact cluster ( p  = 1) fixed point, and the behaviour 
of R, for p < p c  is determined by the random animal (q = 1, p = 0) fixed point. We see 
from table 1 that the MC values of p at p = p c  for d = 2 and 3 are now consistent with 
theory (Stauffer 1979, Pearson 1980, Nienhius et a1 1980). For p > p c  the MC results for 
p are close to the exact value p = l / d .  

Table 2. The cluster diffusivity component for compact clusters ( p  = 1) in two and three 
dimensions obtained from the MC calculations. The interpretation of the MC values of y in 
terms of ‘small,’ ‘intermediate’ and ‘large’ clusters is made in terms of the crossover 
behaviour predicted by equations (5)-(7), The maximum cluster size used in the MC 
simulations is also shown. 

Exponent y 

Intermediate 
Maximum cluster Large clusters clusters Small clusters 

size MC Equation (5) MC Equation ( 6 )  MC Equation (7) 

2d 1400 - 0.0 0.45 0.5 0.9 1.0 
3d 1500 0.33 0.33 - 0.67 0.95 1.0 

Table 3. The cluster diffusivity exponent y for percolation clusters ( p  = p , )  in two and three 
dimensions obtained from the MC calculations. The interpretation of the MC values of y in 
terms of ‘small’ and ‘large’ clusters is made in terms of the crossover behaviour predicted by 
(5) and (6). The maximum cluster size used in the MC simulations is also given. 

Exponent y 

Maximum cluster Large clusters Small clusters 
size MC Equation (5) MC Equation (6) 

2d 400 0.4 -0.06 0.4 0.55 
(no crossover 
observed) 

3d 175 0.28 0.2 0.55 0.77 

Table 4. Comparison of cluster diffusivity exponent y for random animals ( p  = 0) in two and 
three dimensions obtained from the MC calculations and the predictions of (5) based on 
elementary scaling considerations. The maximum cluster size used in the MC simulations is 
also shown. 

Exponent y 

Maximum cluster 
size MC Equation (5) 

2d 150 0.27 -0.28 
3d 125 0.37 0.0 
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Minor inconsistencies still exist between the MC and theoretical values of p for 
random animals. The value of p for random animals in d dimensions is related to the 
critical exponent for the magnetisation near the Lee-Yang edge singularity for the Ising 
model in d - 2  dimensions (Parisi and Sourlas 1981). This relation yields for d = 3 the 
exact value p = in comparison with the MC result p = 0.53 f 0.02. The same relation 
together with an E -expansion and interpolation procedure (Parisi and Sourlas 198 1) 
yields p = 0.61 for d = 2 in contrast to the MC result p = 0.65 * 0.02. However, the MC 
result is consistent with a recent transfer matrix and phenomenological renormalisation 
result of p = 0.6408 f 0.0003 (Derrida and de Seze 1981) and a position space renor- 
malisation group calculation of p = 0.647 .f 0.020 (Family 1981). 

Monte Carlo calculation and crossover behaviour of D,. We present the MC results 
(Holl 1980) for 0, as a function of s in figures 2 ( a )  and ( b )  for the square and simple 
cubic lattice respectively. Since D, is not well defined at p = 1, we consider p = 0.9 (2d) 
and p = 0.8 (3d). We expect that D, follows a power law dependence (Binder and 
Stauffer 1974) 

D, - s-’ (3 + m), (3 1 
and that the exponent y depends on d and on the three limiting values of p .  In the 
following we discuss an elementary scaling theory for the s-dependence of the different 
mechanisms contributing to D,. The main results of this theory are that D, exhibits 
crossover for p z=pc as the cluster size is increased; no crossover is predicted at p = 0. 
These qualitative predictions are consistent with the analysis of the MC results for y 
shown in tables 2 , 3  and 4 for p > p c ,  p = p c  and p = 0 respectively. For large clusters and 
p S p c ,  the discrepancies between the MC values of y and the predictions of the 
elementary scaling theory are at least partially resolved by the renormalisation group 
calculations presented below. 

Since the characteristic length of a cluster scales as R,, we expect that the displace- 
ment in the cluster centre of mass due to one jump scales as RJs. The other property of 
interest is the average number of perimenter sites t,, which for p z=pc scales as (Stauffer 
1979) 

(4) 
Note that t, consists of a bulk perimeter term ( q / p ) s  and an excess perimeter term 
t: = t, - ( q / p ) s .  The presence of bulk and excess perimeter sites implies that there are at 
least two different mechanisms for D,. The dominant mechanism for large s cor- 
responds to the exchange of a site with a bulk perimeter site and from (1) yields the 
behaviour 

t, = ( q / p ) s  +constant sua 

D, - s(RS/s)’ = s Z p - ’ ,  y = 1-2p. ( 5 )  

D, - s“(R,/s)’ = s ’ ” + ~ - ~ ,  y = 2 - u - 2 p .  (6) 

For smaller s we can have the exchange of a site with an excess perimeter site and hence 

Forp  > p c ,  U = 1 - l / d  (Stauffer 1979), and the second term in (4) can be interpreted 
as a surface effect. Hence for p > p c  we can distinguish bulk sites from surface sites, and 
we have two additional types of mechanisms involving surface rather than bulk sites. 
The exchange of a surface site with a bulk perimeter site leads to D, -~-”~s(R,/s)’ = 
s’-~’~(R,/s)’. This behaviour is the same as (6) with U = 1 - l / d .  The exchange of a 
surface site with an excess perimeter site yields 

(R,/s)’= s-l, y = l  (7) D, - s - l l d s : - l l d  
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Figure 2. Log-log plot of the cluster diffusivity D, against number of cluster sites s for 
different values of the site occupation probability. ( a )  Square lattice, 2D. +, p = 0.0; A, 
p = p c ;  0, p = 0.9. ( b )  Simple cubic lattice, 3D. X, p = 0.0; +, p = p c ;  0, p = 0.8. 

where in (7) we have used p = l / d .  The result of this analysis is that for p > p c ,  D, is 
expected to exhibit crossover between y = 1 (equation (7)) for small clusters to 
y = 1 - 2d (equation ( 5 ) )  for large clusters. An intermediate cluster size value of 
y = 1 - l / d  is also predicted from (6). These predicted values of y are compared with 
the MC values in table 2 together with the maximum cluster size used in the MC 

simulations. There is reasonable agreement between theory and experiment, if at d = 2 
we interpret the observed crossover behaviour of D, to be from ‘small’ to ‘intermediate’ 
clusters. 

Renormalisation group calculation of D,. At p = pc scaling arguments (Stauffer 
1979) yield CT = l/pS. According to the extended den Nijs conjecture (Nienhuis et a1 
1980, Pearson 1980), PS =$ and hence CT = 0.396 for d = 2. For d = 3 scaling 
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arguments imply that (+ = 0.45 (Stauffer 1979). These values of U imply that at p = p c  
the second term in (4) cannot be interpreted as a surface effect. Hence D, should 
exhibit crossover between the power law dependence given by mechanisms ( 5 )  and (6). 
We use p = 0.53 for d = 2 and p = 0.39 for d = 3 together with the above values of U 

obtain the predicted values of y shown in table 3 for p = p c .  It is seen that there is 
qualitative agreement between the predictions of the simple theory and the MC values 
for d = 3;  no crossover is observed for d = 2, a result that can probably be attributed to 
finite cluster size effects (see table 3). 

with A and B independent of s 
(Stauffer 1979, Duarte 1979). Hence all exchanges are possible and according to our 
elementary theory, D, behaves as in ( 5 )  with no crossover behaviour predicted. We 
assume p = 0.65 for d = 2 and p = 0.5 for d = 3 to obtain the predicted values of y 
shown in table 4. Note the discrepancies between the predictions of (5) and the MC 

results. 
The elementary scaling theory summarised in ( 5 )  for the dominant s-dependence of 

D, for large clusters implicitly assumes that a finite fraction of the s cluster sites can 
jump a distance that scales as R,. We remove this assumption and rewrite ( 5 )  in the 
more general form 

For random animals ( p  = 0), t, =As  + B for s + 

D, -s@s(Rsls)2, (8) 

where @, is the probability that a site can jump a distance that scales as R,. We assume 
that 

@, - s-, S + , o o ,  (9) 

and hence from ( 2 ) ,  (3), (8) and (9) we have 

y = 1 +x - 2p .  (10) 

In order to identify Q S  with the internal structure of a cluster, we classify all occupied 
sites into either articulation or non-articulation sites. We define a site to be an 
articulation site if upon its removal the cluster separates into two or more pieces. Our 
calculation of 0, for large s rests on the conjecture that 0, can be interpreted as the 
probability that a site in cluster of size s is a non-articulation site. The physical basis of 
this identification is that the jumps of the articulation sites are restricted to perimeter 
sites which reconnect the cluster. In contrast, the jumps of the non-articulation sites are 
not so restricted. The identification of with the non-articulation site probability can 
be checked by a MC calculation. 

We determine the exponents p and x by a position space renomalisation group 
(PSRG) approach, and introduce the generating function i ( K ,  q, 6) :  

K is the fugacity associated with an occupied site in the cluster (Family and Coniglio 
1980), p is the site probability as before, q = 1 - p ,  and g,, is the number of geometrically 
distinct cluster configurations of s sites and perimeter t. The novel feature of (1 1) is the 
introduction of 6 as a ‘ghost’ field which couples only to the r non-articulation 
(removable) sites of the cluster. The introduction of 6 is similar in spirit to that of 
Shlifer et a1 (1979) in which the backbone problem is analysed by defining a ghost field 
which couples only to the backbone bonds. 
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The definition (1 1) of 2 and the identification of Qs with the non-articulation sites 
allows us to write 

where & = In 2. We follow standard RG arguments (Shlifer et a1 1979) and assume that 
the singular part of is a generalised homogeneous function of K - K" and 6 - 6" in 
the vicinity of the fixed point (K" ,  h") and at q = 4". The associated scaling powers f K  

and fh are defined near (K" ,  6") in terms of the renormalised quantities K' and p in the 
usual way. It is then easy to show from (12) that 

We know that in general 0 s x s 1 and expect that x ( p  = 0) > x ( p  = p c )  > x ( p  = 1) = 0. 
We use the cell to site renormalisation approach of Reynolds et a1 (1980) and Family 

and Coniglio (1980) to obtain recursion relations for K ' ,  q' and p. At 6 = 0  the 
recursion relations for K '  and q' reduce to the usual ones, and hence f K  = y K  = 1/p = 
In b/ln AK, where b is the length rescaling factor in the transformation, and AK = 
(aK'/aK)K=K*,q=4*,~=0. We define a cell to be occupied (Reynolds et a1 1980) if and 
only if there is a spanning cluster which spans the cell in any direction (rule RO) or in both 
directions (rule R2). 

In table 5 we show the results (Family 1981) of various small cell PSRG calculations 
of p for the square lattice. Although these results are consistent with the results of large 
cell PSRG calculations and other methods, we do not know a priori whether similar 
numerical accuracy for x can be obtained from small cell calculations. However our 
small cell results for x discussed below are consistent with the MC values of x inferred 
from (10). 

We define a site in the cell to be a non-articulation site if upon its removal the 
remaining cluster spans the cell according to RO (rule Ao) or R2 (rule A2) and if the 
remaining cluster is not disconnected. The recursion relation for 6 can be written in the 
form (Shlifer et a1 1979) 

where Nr is the number of non-articulation sites for a particular configuration and ( Q Q ) 
denotes the configurational average. For small 6 (14) reduces to K'6'= 6(N,(K, 4")).  
Since 6" = 0 we obtain 

f h  = In h',/ln b, (15) 

where 

For compact clusters the recursion relations are K' = K b d  and K'6' = K bd6. Hence we 
obtain y~ = j& = d which yields x = 0 from (13). The result x = 0 implies that QS is 
independent of s for compact clusters (see (9)). Hence in this case the dominant 
s-dependence of D, is given correctly by the elementary scaling theory of ( 5 ) .  The 
results of our small cell calculations of x ( p  = 0) and x ( p  = p , )  according to rules AO and 
A2 for d = 2 are summarised in table 5 .  The corresponding results for y derived from 
(10) are also shown. From table 5 we see that the magnitude of x ( p  = p , )  is insenstive to 
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Table 5. Results of PSRG calculations on the square lattice for the radius of gyration 
exponent p and the non-articulation site probability exponent x for random animals and 
percolation clusters. The values of the exponent y of the cluster diffusivity are inferred from 
the relation y = 1 + x - 2p (see (10)). The spanning rules Ro, R2, A. andA2 are explained in 
the text. For comparison the results of the MC calculations of p and y and the inferred 
values of x are aslso shown. The PSRG results for p are from Family (1981). 

Random animals Percolation clusters 

K* P 

b = 2 ,  Ro, A0 0.2056 
b = 2, R2, A2 0.4728 
b = 2, R2, Ao 0.4728 
b = 3, Ro, A0 0.2405 
b = 3, R2, A2 0.3819 
b = 3, R2, Ao 0.3819 

- MC 

0.8861 
0.6116 
0.6116 
0.8053 
0.6384 
0.6384 
0.65 

X 

1.0 
1 .o 
0.52 
1.0 
1.0 
0.65 
0.57 

Y K* 

0.23 0.3820 
0.78 0.7676 
0.30 0.7676 
0.39 0.4726 
0.72 0.7325 
0.38 0.7325 
0.27 - 

P X Y 

0.7658 1.0 0.47 
0.5594 1.0 0.88 
0.5594 0.18 0.06 
0.6920 1.0 0.62 
0.5614 0.27 0.15 
0.5614 0.18 0.05 
0.53 0.5 0.4 

our criteria for N,, and we obtain x(p = p , )  - 0.2 and y ( p  = p , )  - 0.1, numerical values 
smaller than the corresponding MC values of x and y .  Since rules A. and A2 under- 
estimate the number of non-articulation sites in a small cell, we expect the true value of 
x and hence of y to be less than our small cell results. For this reason we attribute the 
discrepancy between the value of x ( p  = p , )  estimated by our small cell PSRG calculation 
and the MC calculation to finite cluster size effects in the latter analysis. For p = 0 we 
find that the magnitude of x does depend sensitively on the criteria for N,, a result 
related to the fact that random animals are more stratified than percolation clusters. 
The less restrictive criterion A. yields x ( p  = 0) - 0.6. This value of x together with the 
corresponding PSRG result for p implies that y ( p  = 0) - 0.4 (see (10)). These results are 
consistent with the MC values of x ( p  = 0) and y ( p  = 0). Note that x ( p  = 0) > x ( p  = p , )  as 
expected. 

Discussion. One feature of our rearrangement procedure and hence the MC 
calculation of R, and D, should be noted. That is, our ‘dynamical’ method does not in 
general yield an exact equilibrium ensemble in which the probability of a configuration 
is q ‘ / C ,  g,,q‘. To understand this problem consider the limit of random animals in which 
all possible geometrically distinct s-site clusters have equal weights. For s = 3 on a 
square lattice there are four clusters with t = 7 and two clusters with t = 8, i.e. the 
probability w of a t = 8 cluster is 3 in the equilibrium ensemble. From this ensemble of 
six clusters the rearrangement procedure generates 64 possible configurations and 
yields w = & For small s we can choose the relative weights of the different jumps so 
that the equilibrium ensemble is maintained. For example for p = 0 and s = 3 we obtain 
on a square lattice D3 = 1.1919 for w = 3 and D3 = 1.2292 for w = A, (D3 is dimension- 
less.) The consistency of our MC calculation of p with the theoretical values indicates 
that for large s, the difference between the ensemble average and the ‘time’ average 
vanishes. 

In future work we plan to extend the MC calculations of D, to larger clusters and to 
modify the rearrangement procedure so that the equilibrium ensemble is preserved for 
arbitrary s. A MC calculation of the probability distribution of jump distances would 
lead to a direct test of our assumption that this probability is related to the cluster 
non-articulation site probability. Since the small cell PSRG calculations of the latter 
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probability gave encouraging results, we plan to extend these calculations to larger cells 
and to three dimensions. Of more general interest is the study by MC and renor- 
malisation group methods of more realistic diffusion processes and the establishment of 
‘dynamic’ universality classes. 
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